Pretest 2.1 Solutions ## ST Part - 1. a) What's the only electrolyte-type that can have a pH of 7? - b) Why doesn't a nonelectrolyte conduct electricity? - c) What kind of ions will raise the pH from 3.0 to 8.0? - 2. An investigator goes into a lab after an explosion. Too large a piece of sodium had reacted with water: $$2 \text{ Na}_{(s)} + 2 \text{ H}_2\text{O}_{(l)} \rightarrow \text{H}_2 + 2 \text{ NaOH}_{(s)}$$ - a) He sees white solid on the ceiling. What test can he carry out to reveal that the substance is a base? - b) What ion released by NaOH is responsible for its bitter taste? - c) What substance can eliminate NaOH's bitterness? - d) Predict what would happen to the conductivity of aqueous sodium hydroxide if we perfectly neutralize NaOH with H_2SO_4 . Explain why the solution will /won't keep conducting electricity. If so which part returns electrons? - 3. What two compounds will form if HBr reacts with Ca(OH)₂? Write a balanced equation. - 4. a) From the following list, find the most acidic substance? - b) How much more acidic is it compared to the next most acidic substance? - c) Which is the most basic? ``` pН ``` 0 - Hydrochloric Acid (HCl) of 1M 1.0 - Battery Acid (H₂SO₄ sulfuric acid) 2.0 - Lemon Juice 2.2 - Vinegar 3.0 - Apples 4.0 - Wine and Beer 4.5 - Tomatoes 6.6 - Milk 7.0 - Pure Water 7.2 to 7.4 - Human Blood 8.3 - Baking Soda (Sodium Bicarbonate) 10.5 - Milk of Magnesia 11.0 - Ammonia 12.4 - Lime (Calcium Hydroxide) 13.0 - Lye 14.0 - Sodium Hydroxide (NaOH) ## A Flash FROM YOUR HAPPY PAST b) | 5. | Convert 12 ppm to g/ml. | | | | | | |----------|---|--|--|--|--|--| | 6.
7. | Convert 1200 ppm of salt to $(m/V)\%$. When do we use the PTA method of making a solution instead of the method involving WDTA? | | | | | | | STE PA | ART (blue book pages 58 to 78) | | | | | | | 1. | $0.25\ L$ of a 6 g/L solution are on the counter. How much of the solution should you dilute to $0.50\ L$ to make a 2 g/L solution? | | | | | | | 2. | If it took 35.25 ml of a Ca(OH) ₂ solution to neutralize 0.98 g of H ₃ PO ₄ , what was the molarity of the alkaline solution used?
2 H ₃ PO _{4(aq)} + 3 Ca(OH) _{2 (aq)} \rightarrow Ca ₃ (PO ₄) _{2(s)} + 6 H ₂ O _(I) | | | | | | | 3. | What is the molarity of a 3.0 L solution containing 3.0 grams of KCI? | | | | | | | 4. | Tomatoes have a pH of 4.5. What is the concentration of H ⁺ in a tomato? | | | | | | | 5. | The LD ₅₀ for grain alcohol is 7060 mg/kg. An 85 kg man was found dead with an empty jug of vodka next to him. If the density of grain alcohol is 0.80g/ml, and the vodka is 40% alcohol, what is the least amount of vodka that was in the jug? | | | | | | | 6. | If the bioconcentration factor is 120, and if we find 120 ppm of methyl mercury in a fish, what is the concentration of the toxin in the water? | | | | | | | 7. | 7. a) Place the following organisms in a food pyramid. The ppm are the parts per million of cadmium ion found in various organisms. | | | | | | | | earthworm 0.30 ppm fox 2.5 ppm robin 1.0 ppm | | | | | | | | roundworms 0.01 ppm | | | | | | | | | | | | | | How is bioaccumulation related to how you obtained your answer in a)? 8. Use the following solubility rules to identify the precipitate. Also complete and balance the precipitation equation. $$K_2CO_{3(aq)} + Fe(NO_3)_{2(aq)} \rightarrow$$ - 9. Complete the following ionic equation: - 10. What accounts for the fact that some electrolytes are weak even though they are ionic? Flashback: stoichiometry | ୍ଦ୍ୟ Solubility Rules for Ionic Compounds in Water | | | | | | | |---|---|--|---|------------|--|--| | Anion | + | Cation | = | Solubility | | | | Any negative ion | + | Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , or Cs ⁺ | = | Soluble | | | | Any negative ion | + | Ammonium (NH ₄ ⁺) | = | Soluble | | | | Nitrate (NO ₃ -) | + | Any positive ion | = | Soluble | | | | Acetate (CH ₃ COO ⁻) | + | Ag ⁺ or Hg ₂ ⁺² | = | Insoluble | | | | | + | Any other positive ion | = | Soluble | | | | Cl ⁻ , Br ⁻ , or l ⁻ | + | Ag ⁺ , Pb ⁺² , Hg ₂ ⁺² , or Cu ⁺ | = | Insoluble | | | | | + | Any other positive ion | = | Soluble | | | | Sulfate (SO ₄ -2) | + | Ag ⁺ , Pb ⁺² , Ca ⁺² , Sr ⁺² ,
Ba ⁺² , or Ra ⁺² | = | Insoluble | | | | | + | Any other positive ion | = | Soluble | | | | Sulfide (S ⁻²) | + | Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , or
NH ₄ ⁺ | = | Soluble | | | | | + | Be ⁺² , Mg ⁺² , Ca ⁺² , Sr ⁺² ,
Ba ⁺² , or Ra ⁺² | = | Soluble | | | | | + | Any other positive ion | = | Insoluble | | | | Hydroxide (OH ⁻) | + | Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ ,
NH ₄ ⁺ or Ba ⁺² | = | Soluble | | | | | + | Any other positive ion | = | Insoluble | | | | PO ₄ -3, CO ₃ -2 or
SO ₃ -2 | + | Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , or
NH ₄ ⁺ | = | Soluble | | | | | + | Any other positive ion | = | Insoluble | | |